苏教版必修3高中数学第1章《算法初步》章末知识整合


1 章末知识整合 苏教版必修 3 题型一 算法设计 已知平面直角坐标系内两不同点 A,B,试求 AB 的垂直平分线的方程.试写出 这个问题的算法. 分析:首先应判断 A、B 两点的横、纵坐标是否相 等,在不等时,先求垂直平分的斜率 或线段 AB 的中点坐标,最后由点斜式写出直线方程. 解析:算法如下: S1 S2 输入 x1,y1,x2,y2. 判断 x1=x2 是否成立. y1+y2 如果成立,则输出所求的直线方程为 y← ,转结束; 2 如果不成立,则判断 y1=y2 是否成立. x1+x2 如果成立,则输出所求的直线方程为 x← ,转结束; 2 y1+y2 x1-x2? x1+x2? 如果不成立,则输出所求的直线方程为 y- =- ?x- 2 ?,转结束. 2 y1-y2? ? S3 结束. 规律总结: 算法设计与一般意义上的解决问题不同, 这是一类问题的一般解法的抽象与 概括,它要借助一般的问题解决方法,又要包含这类问题的所有可能情形,它往往是把问题 的解法划分为若干个可执行的步骤, 有时甚至是重复多次, 但最终都必须在有限个步骤之内 完成. 变式训练 1.设计一个算法,将高一某班 50 名同学某次数学考试成绩不及格者的分数打印出来. 解析 :算法步骤如下: S1 令 n←1; S2 S3 如果 n>50,则转到 S7; 输入一个学生的成绩 G; S4 将 G 和 60 比较,如果 G<60,则输出 G; S5 n←n+1; S6 S7 转到 S2; 结束. 2.已知平面直角坐标系中的两点 A(-1,0),B(3,2),写出求线段 AB 的垂直平分线 方程的一个算法. 解析:算法步骤如下: S1 S2 S3 S4 -1+3 0+2 计算 x0= =1,y0= =1,得 AB 的中点 N(1,1); 2 2 2-0 1 计算 k1= = ,得 AB 的斜率; 3-(-1) 2 1 计算 k=- =-2,得 AB 垂直平分线的斜率; k1 得直线 AB 垂直平分线的方程 y-1=-2(x-1),即 y=-2x+3,输出. 题型二 流程图及其画法 求正数 a 平方根近似值的一种算法思路是这样的: 第一步 确定平方根的首次近似值:a1 (a1 可以任取一个正数); a 第二步 由代数式 b1= 求出 b1; a1 a1+b1 第三步 取二者的算术平均值 a2= 为第二次近似值; 2 a 第四步 由方程 b2= 求出 b2 ; a2 第五步 取算术平均值 a3= …… 反复进行上述步骤,直到获得满足误差在 0.1 以内的数为止. 请依照上述思路,画出相应的算法流程图. a2+b2 作为第三次近似值; 2 解析:流程图如下: 规律总结:流程图是用规定的图形和流程线来准确、直观、形象地表示算法的图形.画 流程图之前应先对问题设计出合理有效的算法, 然后分析算法的逻辑结构, 根据逻辑结构画 出相应的流程图. 变式训练 3.写出解方程 ax+b=0(a,b 为常数)的算法,并画出流程图. 解析:算法如下: S1 判断 a 是否为零; S2 若 a=0 且 b=0,输出“方程的解是全体实数”; S3 若 a=0 且 b≠0,输出“方程无解”; S4 若 a≠0,则输出 x= . 流程图如下图所示. b a 题型三 条件语句的程序编写 编写程序,输入两个实数,由小到大输出这两个数. 分析:确定好算法,根据算法过程编写程序. 解析:伪代码: Read a,b If a>b t←a a←b b←t End I

相关文档

高中数学第一章算法初步章末复习课苏教版必修3
18学年高中数学第一章算法初步章末综合测评苏教版必修3
苏教版必修3高中数学第1章《算法初步》章末过关检测卷(一)
学年高中数学第一章算法初步章末复习课苏教版必修3
高中数学第一章算法初步章末复习课学案苏教版必修3
高中数学第一章算法初步章末复习课课件苏教版必修3
高中数学第一章算法初步章末综合测评苏教版必修3
版高中数学第一章算法初步章末复习课学案苏教版必修3(数学教案)
18版高中数学第一章算法初步章末复习课学案苏教版必修3
电脑版